p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.535C24, C24.372C23, C22.3112+ 1+4, (C22×C4)⋊37D4, C23⋊2D4⋊27C2, C23.198(C2×D4), C23.67(C4○D4), C23.4Q8⋊31C2, C23.34D4⋊43C2, C23.10D4⋊61C2, C23.23D4⋊71C2, C2.28(C23⋊3D4), (C2×C42).612C22, (C23×C4).433C22, (C22×C4).145C23, C22.360(C22×D4), (C22×D4).543C22, C23.83C23⋊61C2, C24.C22⋊106C2, C2.86(C22.19C24), C2.41(C22.32C24), C2.43(C22.29C24), C2.C42.260C22, C2.28(C22.34C24), (C2×C4×D4)⋊54C2, (C2×C4⋊D4)⋊24C2, (C2×C4).394(C2×D4), (C2×C4).170(C4○D4), (C2×C4⋊C4).362C22, C22.407(C2×C4○D4), (C2×C22⋊C4).223C22, SmallGroup(128,1367)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.535C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=1, g2=cb=bc, eae=ab=ba, faf=ac=ca, ad=da, ag=ga, bd=db, be=eb, gfg-1=bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fef=de=ed, df=fd, dg=gd, eg=ge >
Subgroups: 708 in 310 conjugacy classes, 96 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C4⋊D4, C23×C4, C22×D4, C22×D4, C23.34D4, C23.23D4, C24.C22, C23⋊2D4, C23⋊2D4, C23.10D4, C23.10D4, C23.4Q8, C23.83C23, C2×C4×D4, C2×C4⋊D4, C23.535C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, C22.19C24, C23⋊3D4, C22.29C24, C22.32C24, C22.34C24, C23.535C24
(1 46)(2 47)(3 48)(4 45)(5 44)(6 41)(7 42)(8 43)(9 34)(10 35)(11 36)(12 33)(13 38)(14 39)(15 40)(16 37)(17 49)(18 50)(19 51)(20 52)(21 53)(22 54)(23 55)(24 56)(25 57)(26 58)(27 59)(28 60)(29 61)(30 62)(31 63)(32 64)
(1 17)(2 18)(3 19)(4 20)(5 13)(6 14)(7 15)(8 16)(9 63)(10 64)(11 61)(12 62)(21 27)(22 28)(23 25)(24 26)(29 36)(30 33)(31 34)(32 35)(37 43)(38 44)(39 41)(40 42)(45 52)(46 49)(47 50)(48 51)(53 59)(54 60)(55 57)(56 58)
(1 19)(2 20)(3 17)(4 18)(5 15)(6 16)(7 13)(8 14)(9 61)(10 62)(11 63)(12 64)(21 25)(22 26)(23 27)(24 28)(29 34)(30 35)(31 36)(32 33)(37 41)(38 42)(39 43)(40 44)(45 50)(46 51)(47 52)(48 49)(53 57)(54 58)(55 59)(56 60)
(1 23)(2 24)(3 21)(4 22)(5 11)(6 12)(7 9)(8 10)(13 61)(14 62)(15 63)(16 64)(17 25)(18 26)(19 27)(20 28)(29 38)(30 39)(31 40)(32 37)(33 41)(34 42)(35 43)(36 44)(45 54)(46 55)(47 56)(48 53)(49 57)(50 58)(51 59)(52 60)
(1 30)(2 31)(3 32)(4 29)(5 54)(6 55)(7 56)(8 53)(9 47)(10 48)(11 45)(12 46)(13 60)(14 57)(15 58)(16 59)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(24 40)(25 41)(26 42)(27 43)(28 44)(49 62)(50 63)(51 64)(52 61)
(2 18)(4 20)(5 9)(6 64)(7 11)(8 62)(10 14)(12 16)(13 63)(15 61)(22 28)(24 26)(29 44)(30 39)(31 42)(32 37)(33 41)(34 40)(35 43)(36 38)(45 47)(46 51)(48 49)(50 52)(53 57)(54 56)(55 59)(58 60)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
G:=sub<Sym(64)| (1,46)(2,47)(3,48)(4,45)(5,44)(6,41)(7,42)(8,43)(9,34)(10,35)(11,36)(12,33)(13,38)(14,39)(15,40)(16,37)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (1,17)(2,18)(3,19)(4,20)(5,13)(6,14)(7,15)(8,16)(9,63)(10,64)(11,61)(12,62)(21,27)(22,28)(23,25)(24,26)(29,36)(30,33)(31,34)(32,35)(37,43)(38,44)(39,41)(40,42)(45,52)(46,49)(47,50)(48,51)(53,59)(54,60)(55,57)(56,58), (1,19)(2,20)(3,17)(4,18)(5,15)(6,16)(7,13)(8,14)(9,61)(10,62)(11,63)(12,64)(21,25)(22,26)(23,27)(24,28)(29,34)(30,35)(31,36)(32,33)(37,41)(38,42)(39,43)(40,44)(45,50)(46,51)(47,52)(48,49)(53,57)(54,58)(55,59)(56,60), (1,23)(2,24)(3,21)(4,22)(5,11)(6,12)(7,9)(8,10)(13,61)(14,62)(15,63)(16,64)(17,25)(18,26)(19,27)(20,28)(29,38)(30,39)(31,40)(32,37)(33,41)(34,42)(35,43)(36,44)(45,54)(46,55)(47,56)(48,53)(49,57)(50,58)(51,59)(52,60), (1,30)(2,31)(3,32)(4,29)(5,54)(6,55)(7,56)(8,53)(9,47)(10,48)(11,45)(12,46)(13,60)(14,57)(15,58)(16,59)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(49,62)(50,63)(51,64)(52,61), (2,18)(4,20)(5,9)(6,64)(7,11)(8,62)(10,14)(12,16)(13,63)(15,61)(22,28)(24,26)(29,44)(30,39)(31,42)(32,37)(33,41)(34,40)(35,43)(36,38)(45,47)(46,51)(48,49)(50,52)(53,57)(54,56)(55,59)(58,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)>;
G:=Group( (1,46)(2,47)(3,48)(4,45)(5,44)(6,41)(7,42)(8,43)(9,34)(10,35)(11,36)(12,33)(13,38)(14,39)(15,40)(16,37)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (1,17)(2,18)(3,19)(4,20)(5,13)(6,14)(7,15)(8,16)(9,63)(10,64)(11,61)(12,62)(21,27)(22,28)(23,25)(24,26)(29,36)(30,33)(31,34)(32,35)(37,43)(38,44)(39,41)(40,42)(45,52)(46,49)(47,50)(48,51)(53,59)(54,60)(55,57)(56,58), (1,19)(2,20)(3,17)(4,18)(5,15)(6,16)(7,13)(8,14)(9,61)(10,62)(11,63)(12,64)(21,25)(22,26)(23,27)(24,28)(29,34)(30,35)(31,36)(32,33)(37,41)(38,42)(39,43)(40,44)(45,50)(46,51)(47,52)(48,49)(53,57)(54,58)(55,59)(56,60), (1,23)(2,24)(3,21)(4,22)(5,11)(6,12)(7,9)(8,10)(13,61)(14,62)(15,63)(16,64)(17,25)(18,26)(19,27)(20,28)(29,38)(30,39)(31,40)(32,37)(33,41)(34,42)(35,43)(36,44)(45,54)(46,55)(47,56)(48,53)(49,57)(50,58)(51,59)(52,60), (1,30)(2,31)(3,32)(4,29)(5,54)(6,55)(7,56)(8,53)(9,47)(10,48)(11,45)(12,46)(13,60)(14,57)(15,58)(16,59)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(49,62)(50,63)(51,64)(52,61), (2,18)(4,20)(5,9)(6,64)(7,11)(8,62)(10,14)(12,16)(13,63)(15,61)(22,28)(24,26)(29,44)(30,39)(31,42)(32,37)(33,41)(34,40)(35,43)(36,38)(45,47)(46,51)(48,49)(50,52)(53,57)(54,56)(55,59)(58,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64) );
G=PermutationGroup([[(1,46),(2,47),(3,48),(4,45),(5,44),(6,41),(7,42),(8,43),(9,34),(10,35),(11,36),(12,33),(13,38),(14,39),(15,40),(16,37),(17,49),(18,50),(19,51),(20,52),(21,53),(22,54),(23,55),(24,56),(25,57),(26,58),(27,59),(28,60),(29,61),(30,62),(31,63),(32,64)], [(1,17),(2,18),(3,19),(4,20),(5,13),(6,14),(7,15),(8,16),(9,63),(10,64),(11,61),(12,62),(21,27),(22,28),(23,25),(24,26),(29,36),(30,33),(31,34),(32,35),(37,43),(38,44),(39,41),(40,42),(45,52),(46,49),(47,50),(48,51),(53,59),(54,60),(55,57),(56,58)], [(1,19),(2,20),(3,17),(4,18),(5,15),(6,16),(7,13),(8,14),(9,61),(10,62),(11,63),(12,64),(21,25),(22,26),(23,27),(24,28),(29,34),(30,35),(31,36),(32,33),(37,41),(38,42),(39,43),(40,44),(45,50),(46,51),(47,52),(48,49),(53,57),(54,58),(55,59),(56,60)], [(1,23),(2,24),(3,21),(4,22),(5,11),(6,12),(7,9),(8,10),(13,61),(14,62),(15,63),(16,64),(17,25),(18,26),(19,27),(20,28),(29,38),(30,39),(31,40),(32,37),(33,41),(34,42),(35,43),(36,44),(45,54),(46,55),(47,56),(48,53),(49,57),(50,58),(51,59),(52,60)], [(1,30),(2,31),(3,32),(4,29),(5,54),(6,55),(7,56),(8,53),(9,47),(10,48),(11,45),(12,46),(13,60),(14,57),(15,58),(16,59),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(24,40),(25,41),(26,42),(27,43),(28,44),(49,62),(50,63),(51,64),(52,61)], [(2,18),(4,20),(5,9),(6,64),(7,11),(8,62),(10,14),(12,16),(13,63),(15,61),(22,28),(24,26),(29,44),(30,39),(31,42),(32,37),(33,41),(34,40),(35,43),(36,38),(45,47),(46,51),(48,49),(50,52),(53,57),(54,56),(55,59),(58,60)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 4M | ··· | 4R |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | C4○D4 | 2+ 1+4 |
kernel | C23.535C24 | C23.34D4 | C23.23D4 | C24.C22 | C23⋊2D4 | C23.10D4 | C23.4Q8 | C23.83C23 | C2×C4×D4 | C2×C4⋊D4 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 1 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 |
Matrix representation of C23.535C24 ►in GL8(𝔽5)
3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 2 | 3 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 4 | 0 | 2 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 4 | 1 | 4 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 2 | 4 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 4 | 1 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(8,GF(5))| [3,2,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,2,0,2,4,0,0,0,0,3,3,0,0,0,0,0,0,2,0,0,2],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,4,0,1],[1,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,4] >;
C23.535C24 in GAP, Magma, Sage, TeX
C_2^3._{535}C_2^4
% in TeX
G:=Group("C2^3.535C2^4");
// GroupNames label
G:=SmallGroup(128,1367);
// by ID
G=gap.SmallGroup(128,1367);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,758,723,185,192]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=1,g^2=c*b=b*c,e*a*e=a*b=b*a,f*a*f=a*c=c*a,a*d=d*a,a*g=g*a,b*d=d*b,b*e=e*b,g*f*g^-1=b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*e*f=d*e=e*d,d*f=f*d,d*g=g*d,e*g=g*e>;
// generators/relations